Части и элементы спирального сверла. Элементы режущей части спирального сверла


Части и элементы спирального сверла.

Рис.21. Части и элементы спирального сверла.

1 - рабочая часть; 2 - режущая часть; 3 - направляющая часть; 4 - шейка;

5 - хвостовик; 6 - лапка

Режущая часть - часть сверла, заточенная на конус. Рабочая часть - часть сверла, снабженная двумя спиральными канавками. Направляющая часть - часть сверла, которая обеспечивает направление сверла в процессе резания. Хвостовик - часть сверла, служащая для закрепления сверла.

Рис.22. Основные элементы рабочей части сверла

1 - передняя поверхность; 2 - задняя поверхность; 3 - режущая кромка;

4 - ленточка; 5 - поперечная кромка

Передняя поверхность - винтовая поверхность канавки, по которой сходит стружка. Задняя поверхность - поверхность, обращенная к поверхности резания.Режущая кромка - линия, образованная пересечением передней и задней поверхностей; режущих кромок у сверла две. Ленточка - узкая полоска на цилиндрической поверхности сверла, расположенная вдоль винтовой канавки; обеспечивает сверлу направление при резании. Поперечная кромка - линия, образованная в результате пересечения обеих задних поверхностей.

Геометрия спирального сверла.

Геометрические параметры спирального сверла показаны на рис. 23.

 

Рис.23. Геометрия спирального сверла.

 

Угол 2φ (удвоенный угол в плане) между режущими кромками колеблется в широких пределах в зависимости от обрабатываемого материала. Угол наклона винтовой канавки ω определяет величину переднего угла и колеблется от 100 до 45° в зависимости от обрабатываемого материала.

Угол ψ - угол наклона поперечной режущей кромки измеряется между проекциями поперечной и главной режущей кромок на плоскость, перпендикулярную оси сверла.

Для определения геометрических параметров режущих кромок их рассматривают

1) в плоскости NN, перпендикулярной к режущей кромке;

2) в плоскости ОО, параллельной оси сверла.Передний угол γ рассматривается в плоскости NN.

Угол наклона винтовой канавки ω и задний угол α рассматриваются в

плоскости ОО.

Элементы резания при сверлении.

Скоростью резания при сверлении называется окружная скорость вращения наиболее удаленной от оси сверла точки режущей кромки.

Подачей при сверлении называется перемещение сверла вдоль оси за один его оборот. Величина подачи измеряется в миллиметрах на один оборот

сверла и обозначается S мм/об . Т.к. сверло имеет две главные режущие кромки,

то подача, приходящаяся на каждую из них Sz= S/2.

Как и при точении, подачу можно измерять и в мм. за 1мин. (минутная подача)

SM = S۰n мм/мин.

 

 

Рис.24. Элементы резания при сверлении.

a- толщина среза в мм., измеряемая в направлении, перпендикулярном к режущей кромке;

b - ширина среза в мм., измеряемая вдоль режущей кромки;

t - глубина резания - расстояние от обрабатываемой поверхности отверстия до оси сверла t = D/2.

Фрезерование.

Фрезерование - один из высокопроизводительных и распространённых способов обработки металлов резанием.

Фреза представляет собой инструмент, имеющий несколько зубьев, причём каждый из них можно рассматривать как резец.

Рис.25 Режущая часть фрезы.

При фрезерование главное (вращательное) движение осуществляет фреза, а движение подачи - заготовка. Фрезерованием производится обработка плоскостей, пазов, фасонных поверхностей, разрезка металлов.

Геометрия фрез.

Рис.26 Геометрия режущей части фрезы.

Фреза состоит из корпуса (тела) и режущих зубьев. Она представляет собой многозубный режущий инструмент в виде тела вращения, на образующейповерхности или на торце которого расположены режущие кромки. Различают углы главной режущей кромки зуба в плоскости, нормальной к режущей комке, и углы в плоскости, нормальной к оси фрезы.

В плоскости А-А, нормальной к режущей кромке, находятся главный передний угол у и нормальный задний угол αn . В плоскости Б-Б, нормальной к оси фрезы, находятся главный задний угол α и поперечный или радиальный передний угол γ'.

Основное назначение переднего угла γ - уменьшение работы пластической деформации и работы трения по передней поверхности в процессе резания и обеспечение наивыгоднейшей стойкости режущего инструмента.

Главный задний угол α измеряется в плоскости Б-Б, перпендикулярной к оси фрезы.

Назначение заднего угла:

1. в создании условий беспрепятственного перемещения задней поверхностизуба относительно поверхности резания;

2. в уменьшении работы трения по задней поверхности зуба.



infopedia.su

Лабораторная работа №2 - файл Лабораторная работа №2.doc

Лабораторная работа №2скачать (993.8 kb.)

Доступные файлы (1):

содержание

Лабораторная работа №2.doc

Реклама MarketGid: Лабораторная работа № 2

Основные элементы конструкции и геометрические параметры режущей части спирального сверла

ЦЕЛЬ РАБОТЫ: ознакомиться с основными типами свёрл, изучить назначение и область применения свёрл, особенности их конструкции и геометрии, научиться измерять конструктивные элементы и основные углы спирального сверла.

Теоретическая часть

Свёрла являются одним из самых распространенных видов инструментов. В промышленности применяют свёрла: спиральные, перовые, одностороннего резания, эжекторные, кольцевого свёрления и специальные комбинированные.

Свёрла изготовляют из легированной стали 9ХС, быстрорежущих сталей Р6М5 и др., оснащенные твёрдым сплавом ВК6, ВК6-М, ВК8 и др.

Сверление применяется для получения отверстий в сплошном материале, а также для рассверливания уже имеющихся отверстий. Сверлением обеспечивается 11...12 квалитет точности и шероховатость обработанной поверхности Rz 2080 мкм. В качестве инструментов используются свёрла различных конструкций.

Спиральные свёрла имеют наибольшее распространение и состоят из следующих основных частей: режущей, калибрующей или направляющей, хвостовой и соединительной (рисунок 1, а).

Спиральные свёрла из быстрорежущей стали с цилиндрическим хвостовиком изготавливают диаметром от 1 до 10 мм. Свёрла с коническим хвостовиком изготавливают диаметром от 6 до 80 мм. Быстрорежущие свёрла диаметром свыше 68 мм делают сварными, хвостовики у этих свёрл изготавливают из сталей 45, 40Х и приваривают их к рабочей части. При диаметре сверла свыше 6 мм хвостовик чаще всего имеет коническую форму. Для корпусов свёрл, оснащенных твёрдым сплавом, применяют сталь 9ХС и быстрорежущую сталь.

Главные режущие кромки сверла прямолинейны и наклонены к его оси под главным углом в плане. Режущая и калибрующая части сверла составляют его рабочую часть, на которой образованы две винтовые канавки, создающие два зуба, обеспечивающие процесс резания. На рабочей части сверла (рисунок 1, б) имеется шесть лезвий: два главных (1-2 и 1'-2'), два вспомогательных (1-3, 1'-3'), расположенных на калибрующей части сверла, которая служит для направления в процессе работы, и два на перемычке (0-2 и 0-2').

Режущие свойства сверла во многом определяются геометрическими параметрами и материалом его режущей части. Рассмотрим геометрические параметры сверла. Сверло характеризуется следующими основными углами: передним углом , задним углом , углом наклона винтовой канавки , углом наклона поперечной кромки  и углом при вершине резца 2.

Передним углом  называется угол между касательной к передней поверхности сверла в рассматриваемой точке и нормалью в той же точке к поверхности вращения. Этот угол рассматривается в плоскости N-N, перпендикулярной к главной режущей кромке. В каждой точке режущего лезвия в плоскости N-N угол  имеет различную величину (рисунок 1, б) и определяется по формуле

, (1)

где rx – радиус окружности, на которой расположена рассматриваемая точка;

R – радиус сверла.

Наибольшее значение передний угол имеет у периферии сверла, наименьшее значение – у вершины сверла.

Рисунок 1 – Конструктивные элементы спирального сверла

Задний угол  - это угол, заключенный между касательной к задней поверхности пера в рассматриваемой точке режущего лезвия и касательной к окружности ее вращения вокруг оси сверла. Измеряется в плоскости О-О (рисунок 1, б), параллельной оси сверла. Для того, чтобы иметь практически одинаковое сечение зуба сверла вдоль всей длины режущей кромки, задний угол делается так же, как и передний, переменным. Задняя поверхность сверла затачивается так, что на периферии угол  имеет минимальное значение.

Угол наклона винтовой канавки  – это угол заключенный между осью сверла и развернутой винтовой линией стружечной канавки. Для свёрл из быстрорежущей стали угол  назначается в зависимости от их диаметра в пределах от 18 до 30 градусов.

Угол наклона поперечного лезвия (перемычки)  – угол между проекциями поперечного и одного из главных режущих лезвий на плоскость, перпендикулярную оси сверла. Этот угол обычно принимают равным 55 градусам.

Угол при вершине 2 – угол между главными режущими лезвиями. Величина этого угла зависит от свойств обрабатываемого материала и лежит в пределах 80 140 градусов.

Для уменьшения трения об образованную поверхность отверстия и уменьшения теплообразования сверло на всей длине направляющей части имеет занижение по спинке с оставлением по режущей кромке ленточки шириной от 0,4 до 2,0 мм в зависимости от диаметра сверла. Ленточки обеспечивают направление сверла в процессе резания. Вспомогательные задние углы на ленточках равны 0, так как вспомогательная задняя поверхность очерчена цилиндром.

Для уменьшения трения при работе на ленточках делают утонение по направлению к хвостовику. За счёт обратного конуса образуется вспомогательный угол в плане 1.

Процесс резания при сверлении имеет некоторые особенности:

1) наличие очень малых передних углов в центральной части сверла и отрицательных у перемычки повышает деформацию срезаемой стружки, увеличивает силы трения и тепловыделение в зоне резания.

2) наблюдается повышенное трение в процессе свёрления из-за отсутствия вспомогательных задних углов на ленточках.

3) сверло в процессе резания находится в постоянном длительном контакте со стружкой и обработанной поверхностью, ухудшены условия отвода стружки.

4) различие скоростей резания для точек режущих лезвий в процессе свёрления усложняет процесс деформации стружки и ее схода по передней поверхности инструмента.

Неблагоприятные геометрические параметры на поперечной кромке и ленточке приводят к необходимости улучшения их режущих свойств с помощью специальных подточек. Способами улучшения геометрических параметров свёрл являются подточка перемычки (НП) у свёрл диаметром более 8 мм (рисунок 2, в – е), двойная заточка (ДП) (рисунок 2, б), периферийный участок вершины затачивается под углом 2о = 7090 градусов для свёрл диаметром более 10 мм, подточка ленточки (рисунок 2, ж) - у свёрл диаметром более 10 мм на длине 1,54 мм под углом 1=68 градусов. Подтачивают перемычку для уменьшения осевой силы и крутящего момента. Осевая силы уменьшается на 3035 % по сравнению со сверлом не имеющий подточки. Подточка ленточек в местах наибольшего износа увеличивает стойкость свёрл в 2-3 раза.

Конструктивные элементы спиральных свёрл стандартизированы. ГОСТ регламентирует следующие основные размеры спиральных свёрл:

  1. номинальный диаметр D;
  2. общая длина сверла L;
  3. длина рабочей части l;
  4. размеры шейки l3 и хвостовика l4 .

^

Методика и порядок выполнения работы
  1. Ознакомление с геометрическими и конструктивными параметрами спирального сверла по экспонатам, имеющимся в лаборатории.
  2. Измерение значений конструктивных и угловых параметров сверла.
Диаметры сверла dн и dк на рабочей части измеряются с помощью микрометра или штангенциркуля.

Рисунок 3 – Измерение диаметра сверла

штангенциркулем

Толщина сердцевины у вершины сверла измеряется с помощью микрометра со специальными вставками.

Общая длина сверла ^ ; длина рабочей части l; размеры шейки l3 и хвостовика l4 , ширина ленточки измеряются масштабной линейкой.

Размеры конусного хвостовика характеризуются системой и номером конуса по стандарту (см. таблицу 1).

Таблица 1

№ конуса Морзе Диаметр хвостовика D1, мм
0 9,212
1 18,240
2 17,980
3 24,051
4 31,542
5 44,731
6 63,760

Для определения номера конуса измеряется диаметр конуса D1. По измеренному значению из таблицы 1 определяется номер конуса.

Определение угла наклона винтовой канавки  производится развёртыванием винтовой линии сверла на плоскость. Развёртывание осуществляется прокатыванием сверла через копировальную бумагу на плоскость. Величина угла измеряется между линией, отпечатавшейся от развёртки винтовой ленточки и прямой, перпендикулярной к торцу развёртки и параллельной направлению сверла. Измерение угла производится при помощи транспортира или угломера.

Рисунок 4 – Измерение угла 

Измерение угла при вершине 2 производится универсальным угломером.

Рисунок 5 – Измерение угла при вершине универсальным угломером

Измерение угла наклона поперечной режущей кромки производится также универсальным угломером.

Рисунок 6 – Измерение угла наклона поперечной режущей кромки

Определение величины вспомогательного угла в плане производится по формуле

,

где lк – длина калибрующей части.

Передняя поверхность спирального сверла представляет собой винтовую поверхность. Вследствие изменения угла наклона винтовой линии для различных точек лезвия сверла величина переднего угла постепенно увеличивается от центра к периферии.

Рисунок 7 – Схема измерения угла 

Передний угол в различных точках лезвия определяется в плоскости, проходящей перпендикулярно к режущей кромке. Передний угол в различных точках лезвия различен и может быть подсчитан по формуле (1).

Задний угол сверла может быть измерен с помощью специального индикаторного приспособления, устанавливаемого на токарном станке.

Рисунок 8 – Прибор для измерения величины заднего угла сверла

контактным методом

  1. Составление рабочего чертежа спирального сверла. Рабочий чертёж составляется на сверло, указываемое преподавателем. На рабочем чертеже делаются все необходимые проекции и сечения, а также проставляются измеренные значения габаритных размеров и угловых параметров.
Скачать файл (993.8 kb.)

gendocs.ru

Части и элементы спирального сверла

Фиг. 177. Части и элементы спирального сверла. Фиг. 177. Части и элементы спирального сверла.
Сверла. По конструкции сверла классифицируют на спиральные, кольцевые, для глубокого сверления и центровочные. Наибольшее распространение получили спиральные сверла с коническими и цилиндрическими хвостовиками. Части и элементы спирального сверла приведены на рис. 137. Спиральные сверла изготовляют диаметром от 0,25 до 80 мм.  [c.241]
Рис. 137. Части и элементы спирального сверла Рис. 137. Части и элементы спирального сверла
Части и элементы спирального сверла  [c.364]

I. ЧАСТИ И ЭЛЕМЕНТЫ СПИРАЛЬНОГО СВЕРЛА  [c.261]

Рис. 10, Части и элементы спиральных сверл Рис. 10, Части и элементы спиральных сверл
Части и элементы спирального сверла. Спиральные сверла имеют наибольшее применение. Это сверло (рис. 44) состоит из рабочей части 1, включающей режущую часть  [c.117]

Части и элементы спирального сверла. Спиральные сверла имеют наибольшее распространение. Это сверло (рис. 327, а, б) состоит из рабочей части /, включающей режущую /х и калибрующую /., части шейки 4, конического (рис. 327, а) или цилиндрического (рнс. 327, б) хвостовика для крепления сверла в шпинделе станка лапки е , служащей упором для выбивания  [c.492]

Перечертите в вашу тетрадь рис. 151, а, б, назовите части и элементы спирального сверла и их назначение.  [c.153]

Рис. 6.39, Части, элементы и углы спирального сверла Рис. 6.39, Части, элементы и углы спирального сверла
Повышение точности размеров, определяющих симметричность расположения элементов режущей части многозубого инструмента (спиральные сверла, метчики, торцовые фрезы), позволяют значительно повысить стабильность работы режущего инструмента на автоматических линиях. Минимальная стойкость спиральных сверл и метчиков может быть повышена в этом случае при работе на автоматических линиях от 3 до 60 раз с одновременным значительным уменьшением разницы между максимальной и минимальной стойкостями.  [c.84]

Следует отметить, что в некоторых случаях для работоспособности инструмента наибольшее значение имеет износ не задней и нЬ передней грани, а некоторых других элементов режущей части. Например, работу спирального сверла часто ограничивает износ направляющей ленточки (задней вспомогательной грани).  [c.72]

Основными конструктивными элементами спиральных сверл являются рабочая (режущая) часть и корпус с элементами крепления.  [c.203]

Элементы зенкера. На рис. 170 показаны элементы и части цилиндрического зенкера. По форме режущей части зенкер напоминает спиральное сверло, но в отличие от сверла он имеет не две, а три или четыре главные режущие кромки, расположенные на режущей части кроме того, зенкер не имеет поперечной кромки.  [c.186]

Спиральное сверло, его части и элементы  [c.72]

Назовите основные части в элементы спирального 3. Как контролируют длину и диаметр растачиваемо-сверла. го отверстия  [c.60]

Элементы рабочей части и геометрические параметры спирального сверла показаны на рис. 6.39, б. Сверло имеет две главные режущие кромки //, образованные пересечением передних 10 и задних 7 поверхностей и выполняющие основную работу резания поперечную режущую кромку 12 (перемычку) и две вспомогательные режущие кромки 9. На цилиндрической части сверла вдоль винтовой канавки расположены две узкие ленточки 8, обеспечивающие направление сверла при резании.  [c.313]

Введение понятия об удельном износе позволило установить определенную закономерность в изменении режущих свойств инструмента при работе на автоматических линиях за период наблюдения. На рис. 9, 10 и И приведены типичные графики распределения удельного износа по основным элементам режущей части спиральных сверл, метчиков и торцовых фрез при работе на автоматических линиях за период наблюдения. Из приведенных кривых видно, что фактическая стойкость спиральных сверл, метчиков и торцовых фрез за период наблюдения при работе на автоматических линиях изменялась в весьма широких пределах. Однако при этом наблюдается определенная закономерность распределения удельного износа основных элементов режущей части инструмента, которая выражается в том, что в зоне наибольшей стойкости имеется наименьшая величина удельного износа по одноименным элементам режущей части инструмента. Кроме того, в этой зоне величина удельного износа по одноименным элементам режущей части каждого вида инструмента практически одинакова. В зоне малой стойкости величина удельного износа основных элементов режущей части инструмента значительно возрастает, и, кроме того, наблюдаются значительные отклонения величины удельного износа по одноименным элементам режущей части каждого инструмента.  [c.75]

Спиральное сверло и элементы его рабочей части приведены на рис. 2.22.  [c.77]

Элементы и геометрические параметры спирального сверла. Спиральное сверло имеет рабочую часть, шейку, хвостовик для крепления сверла в шпинделе станка и лапку, служащую упором при выбивании сверла из гнезда шпинделя (фиг. 154, а). Рабочая часть, в свою очередь, разделяется на режущую и направляющую.  [c.190]

По конструкции различают сверла спиральные, с прямыми канавками, перовые, для глубоких отверстий, для кольцевого сверления, центровочные и специальные комбинированные. К конструктивным элементам относятся диаметр сверла D угол режущей части 2ф (угол при вершине) угол наклона винтовой канавки м геометрические параметры режущей части сверла, т. е. соответственно передний а и задний y углы и угол резания б, толщина сердцевины (или диаметр сердцевины) Ф, толщина пера (зуба) Ь ширина ленточки / обратная конусность форма режущей кромки и профиль канавки сверла длина рабочей части /о общая длина сверла L.  [c.206]

Например, на фиг, 11 показано спиральное сверло. Хотя внешне оно совершенно не похоже на резец, но оно имеет те же элементы режущей части и углы. Если мысленно рассечь сверло плоскостью АА, перпендикулярной к его главной режущей кромке, то мы увидим, как и у резца, передний угол f и задний а.  [c.17]

Основные элементы и части спирального сверла изображены на фиг. 32. Спиральное сверло представляет собой двузубый инструмент. Режущая часть его снабжена двумя режущими кромками и поперечной кромкой.  [c.53]

Общие конструктивные элементы спиральных сверл. Д.лина рабочей части сверла должна быть выбрана с учетом необходимой глубины сверленпя и запаса на переточки, так как сверло перетачивают по задней грани и длина рабочей части при этом укорачивается. Длина рабочей части сверл приведена в соответствующих стандартах. Следует отметить, что у сверл оснащенных пластинами го твердого сплава, д шна рабочей частп должна быть выбрана меньше, чем у быстрорежущих свер.т, так как запас на переточку ввиду небольшой длины пластины будег значительно меньше.  [c.103]

Спиральные сверла, изготовляемые из быстрорежущей стали И ее заменителей, при работе без подсверловки и при рассверливании получают износ по следующим элементам режущей части (фиг. 60)  [c.79]

Спиральное (винтовое) сверло—основной режущий инструмент, применяемый при сверлении отверстий в металле. Спиральное сверло (рис. 199, а. б) представляет собой цилиндрический стержень с двумя винтовыми канавками и состоит из трех основных частей рабочей части 1, шейки 2 и хвостовика 3 (ци линдрического или конического). Рабочая часть / в результате заточки вершины сверла (режущая часть) под определенным углом tp имеет пять режущих элементов две главные кромки 4, кромку перемычки 5 и две вспомогательные кромки 6, расположенные на ленточках винтовых канавок. При заточке сверла необходимо следить, чтобы обе главные кромки 4, образующие угол, имели одинаковую длину, иначе диаметр просверленного отверстия будет больше диаметра сверла. Угол при вершине сверла берется в пределах 90—130 (у лормальных стандартных сверл 118—120°) в зависимости от обрабатываемого материала для мягких металлов угол берется меньше, для твердых — больше Угол наклона винтовых канавок сверл угол ш берут равным 28—30°.  [c.366]

mash-xxl.info

Элементы режущей части сверла - Энциклопедия по машиностроению XXL

ЭЛЕМЕНТЫ РЕЖУЩЕЙ ЧАСТИ СВЕРЛА  [c.223]

Элементы режущей части сверла  [c.185]

Основными условиями являются правильный выбор марки твердого сплава, формы и размера пластинки правильное назначение геометрических элементов режущей части сверла правильное и надежное закрепление пластинки в корпусе сверла, который должен обладать достаточной жесткостью и прочностью высококачественная заточка сверл с обязательной их доводкой применение смазывающе-охлаждающей жидкости (обычно эмульсии, 8 ч- 10 л/мин), надежное закрепление инструмента в патроне или другом приспособлении надежное закрепление заготовки своевременная переточка инструмента правильный выбор оборудования для скоростного сверления (достаточно мощного, высокоскоростного и жесткого) применение быстродействующих приспособлений, автоматических упоров и других элементов малой автоматизации, способствующих снижению вспомогательного времени.  [c.274]

Рекомендуемые [188] оптимальные геометрические элементы режущей части сверла (фиг. 185) следующие 2сверл диаметром до 12 мм делается одинарная заточка.  [c.299]

Основные элементы режущей части сверла показаны на рис. 89, в.  [c.86]

Простановка размеров на элементы деталей, обрабатываемые резанием. Сверление глухого отверстия и нарезание резьбы. Последовательность обработки рассмотрена выше (см. рис. 13.30). На чертеже наносят обозначение резьбы (см. рис. 13.19), глубину сверления и длину резьбы с полным профилем, а также размер фаски. Дно отверстия, образованное режущей частью сверла, изображают условно как конус с углом при вершине 120° (размер не наносят). При нарезании конической резьбы длину ее не указывают (см. рис. 13.19, ж).  [c.269]

Введение понятия об удельном износе позволило установить определенную закономерность в изменении режущих свойств инструмента при работе на автоматических линиях за период наблюдения. На рис. 9, 10 и И приведены типичные графики распределения удельного износа по основным элементам режущей части спиральных сверл, метчиков и торцовых фрез при работе на автоматических линиях за период наблюдения. Из приведенных кривых видно, что фактическая стойкость спиральных сверл, метчиков и торцовых фрез за период наблюдения при работе на автоматических линиях изменялась в весьма широких пределах. Однако при этом наблюдается определенная закономерность распределения удельного износа основных элементов режущей части инструмента, которая выражается в том, что в зоне наибольшей стойкости имеется наименьшая величина удельного износа по одноименным элементам режущей части инструмента. Кроме того, в этой зоне величина удельного износа по одноименным элементам режущей части каждого вида инструмента практически одинакова. В зоне малой стойкости величина удельного износа основных элементов режущей части инструмента значительно возрастает, и, кроме того, наблюдаются значительные отклонения величины удельного износа по одноименным элементам режущей части каждого инструмента.  [c.75]

Использование на автоматических линиях режущего инструмента с высокой точностью расположения одноименных элементов режущей части в заданных поверхностях позволит значительно снизить отношение максимальной стойкости к минимальной за счет значительного повышения минимальной стойкости. В этом случае минимальная стойкость по своему численному значению приближается к числовому значению средней арифметической величины, установленной за период наблюдения. Данные таблиц показывают значительные отклонения фактической стойкости от стойкости, определенной по действующим нормативам режимов резания. Особо большое отклонение имеется у спиральных сверл.  [c.81]

Повышение точности размеров, определяющих симметричность расположения элементов режущей части многозубого инструмента (спиральные сверла, метчики, торцовые фрезы), позволяют значительно повысить стабильность работы режущего инструмента на автоматических линиях. Минимальная стойкость спиральных сверл и метчиков может быть повышена в этом случае при работе на автоматических линиях от 3 до 60 раз с одновременным значительным уменьшением разницы между максимальной и минимальной стойкостями.  [c.84]

По конструкции различают сверла спиральные, с прямыми канавками, перовые, для глубоких отверстий, для кольцевого сверления, центровочные и специальные комбинированные. К конструктивным элементам относятся диаметр сверла D угол режущей части 2ф (угол при вершине) угол наклона винтовой канавки м геометрические параметры режущей части сверла, т. е. соответственно передний а и задний y углы и угол резания б, толщина сердцевины (или диаметр сердцевины) Ф, толщина пера (зуба) Ь ширина ленточки / обратная конусность форма режущей кромки и профиль канавки сверла длина рабочей части /о общая длина сверла L.  [c.206]

Например, на фиг, 11 показано спиральное сверло. Хотя внешне оно совершенно не похоже на резец, но оно имеет те же элементы режущей части и углы. Если мысленно рассечь сверло плоскостью АА, перпендикулярной к его главной режущей кромке, то мы увидим, как и у резца, передний угол f и задний а.  [c.17]

Следует отметить, что в некоторых случаях для работоспособности инструмента наибольшее значение имеет износ не задней и нЬ передней грани, а некоторых других элементов режущей части. Например, работу спирального сверла часто ограничивает износ направляющей ленточки (задней вспомогательной грани).  [c.72]

Режущая часть сверла состоит из следующих элементов (рис. 250, б) винтовой канавки 1 для отвода стружки, дно которой является передней поверхностью главного режущего лезвия 2 ленточки 3, направляющей сверло в отверстии главной задней поверхности 4 поперечного режущего лезвия 5.  [c.563]

Главные функции в процессе резания выполняет режущая часть сверла, на которой расположены все его режущие элементы  [c.364]

На рис. У1-41 приведены элементы конструкции спиральных сверл с коническим и цилиндрическим хвостами. На рис. У1-42 показаны геометрические параметры режущей части сверла, где 1—2  [c.377]

Сверла и их закрепление. Для сверления и рассверливания на токарно-карусельных станках применяются нормальные быстрорежущие спиральные сверла с коническими хвостовиками. Основные элементы режущей части такого спирального сверла показаны  [c.155]

Заточка сверл. В процессе работы сверла изнашиваются по передней и задней поверхностям, срабатывается фаска, округляются уголки (рис. 51, а). Затупленные сверла затачивают на заточных станках. Контроль основных элементов режущей части осуществляется шаблонами (рис. 51, б).  [c.78]

Основные элементы рабочей части сверл — зуб, ленточка, спинка зуба, канавка, сердцевина, передняя поверхность, задняя поверхность, главная режущая кромка, поперечная кромка (перемычка). Пересечение передней поверхности и ленточки образует кромку ленточки.  [c.119]

Режущая часть сверла (рис. 29,6) состоит из следующих элементов двух зубьев (перьев), образованных двумя канавками для отвода стружки сердцевины — средней части сверла, соединяющей оба зуба (пера) двух передних поверхностей, по которым сбегает стружка и которые воспринимают силу резания двух ленточек — узких пол осок по наружному диаметру сверла, служащих для его направления и центрирования в отверстии двух главных режущих лезвий, образованных пересечением передних и задних поверхностей и выполняющих основную работу резания лезвия перемычки, образованного пересечением обеих задних поверхностей.  [c.72]

На станках сверлильной группы обрабатывают отверстия многолезвийными режущими инструментами сверлами, зенкерами, развертками. В процессе резания инструмент вращается со скоростью резания V и имеет поступательное перемещение со скоростью подачи 5, обрабатываемую деталь устанавливают неподвижно. Типовым режущим инструментом для сверлильных работ является спиральное сверло. На рис. 11.7 показана конструкция спирального сверла с цилиндрическим хвостовиком для сверления отверстий малых диаметров. Основные элементы режущей части спирального сверла 1 и 3 — главные режущие кромки 2 — задняя поверхность,  [c.217]

Режущая часть сверла. Производительность и стойкость сверла во многом зависят от значения главного угла в плане ф. Подобно главному углу в плане проходного резца, угол ф сверла влияет на составляющие силы резания, длину режущей кромки и элементы сечения стружки. Обычно на чертежах сверл указывают значение угла при вершине 2ф. С увеличением угла при вершине сверла уменьшается активная длина режущей кромки и увеличивается толщина срезаемого слоя, при этом увеличиваются силы, действующие на единицу длины режущей кромки, что вызывает повышенное изнашивание сверла. При увеличении угла 2ф  [c.102]

Перечислите основные части и элементы сверла, формы заточки режущей части сверла.  [c.44]

Сверло состоит из рабочей части Е, хвостовика Б и шейки В (рис. 90, а). На рабочей части сверла расположены режущие элементы (рис. 90, б), которые срезают и отводят стружку. Рабочая часть сверла имеет по две главных и вспомогательных режущих кромки и одну поперечную. В отличие от резца передние поверхности сверла винтовые, главные задние поверхности криволинейные, а вспомогательные задние поверхности представляют собой винтовые ленточки, обеспечивающие направление сверла в процессе резания. Хвостовик служит для закрепления сверла на станке, имеет цилиндрическую или коническую форму. Шейка обеспечивает выход круга при шлифовании рабочей части сверла. На режущей части сверла, по аналогии с резцом, имеются главные углы, углы в плане и дополнительно углы со и ф. Рассмотрим их.  [c.149]

Конструкция и геометрические элементы режущей части спирального сверла улучшенной конструкции.  [c.36]

Элементы рабочей части и геометрические параметры спирального сверла показаны на рис. 6.39, б. Сверло имеет две главные режущие кромки //, образованные пересечением передних 10 и задних 7 поверхностей и выполняющие основную работу резания поперечную режущую кромку 12 (перемычку) и две вспомогательные режущие кромки 9. На цилиндрической части сверла вдоль винтовой канавки расположены две узкие ленточки 8, обеспечивающие направление сверла при резании.  [c.313]

Основными конструктивными элементами сверла являются а) режущая часть б) направление винтовой канавки в) форма канавки г) углы режущей кромки д) форма задней (затылованной) поверхности е) ленточка  [c.321]

Сверла перовые — Выбор для работы на КРС 227, 232 — Углы режущей части 103 — Элементы 102 --для гетинакса 127, 128  [c.801]

Элементы заточек и подточек режущих частей у сверл (фиг. 86)  [c.166]

Основной для процесса резания является режущая часть, на которой расположены все режущие элементы сверла. Она состоит из двух зубьев (перьев), образованных двумя канавками для отвода стружки (фиг. 154,6) перемычки (сердцевины)—средней части сверла, соединяющей оба зуба (пера) двух передних поверхностей, по которым сбегает стружка, и двух задних поверхностей двух ленточек, служащих для направления сверла и уменьшения его трения о стенки отверстия двух главных режущих кромок, образованных пересечением передних и задних поверхностей и выполняющих основную работу резания поперечной кромки (перемычки), образо-  [c.191]

Зенкеры предназначаются для увеличения размеров отверстий, полученных сверлением, штамповкой, придания им более высокой точности и чистоты и правильной геометрической формы. По внешнему виду цельные зенкеры (рис. 4, о) напоминают сверло и состоят из тех же основных элементов, но имеют больше режущих кромок (3—4) и спиральных канавок и более короткую режущую часть (форма — усеченный конус). Три-четыре режущие кромки лучше центрируют инструмент в отверстии, придают ему большую жесткость, чем обеспечивается получение точности 4-го класса и более высокой чистоты обработанной поверхности. Зенкеры больших диаметров выполняются насадными, причем они могут быть цельными (рис. 4, б), с напаянными пластинками (рис. 4, в) и сборными со вставными ножами (рис. 4, г).  [c.75]

Выбор материала для режущей части сверла. При обработке пластмасс волокнистого строения, обладающих низкой теплопроводностью, теплота, выделяющаяся в зоне образова ния стружки, почти полностью концентрируется на режущих элементах ин струмеыта, в результате чего стойкость последнего сильно снижается. Сверла, изготовленные из углеродистой инструментальной стали, поэтому не обеспечивают высокой производительности. Применение сверл с режущей частью из твердых сплавов часто лимитируется прижогом стенок отверстия, возникающим при высоких скоростях резания.  [c.606]

Заточка сверл. В процессе работы сверла изнащиваются по передней и задней поверхности, срабатывается фаска, округляются уголки (рис. 3, б). Затупленные сверла затачиваются, Централизованная заточка производится на специальных станках, дающих возможность выдержать все элементы режущей части. В слесарных мастерских заточка ведется на точилах вручную. Контроль основных элементов режущей части осуществляется шаблонами (рис. 3, в).  [c.71]

Спиральные сверла, изготовляемые из быстрорежущей стали И ее заменителей, при работе без подсверловки и при рассверливании получают износ по следующим элементам режущей части (фиг. 60)  [c.79]

Форма канавки. Одним из конструктивных элементов, характеризующих рабочую часть сверла является форма канавки сверла. Форму поперечного сечения канавки сверла в чертежах не указывают, а приводят другой элемент — профиль шлифовального круга или зуба канавочной фрезы. Профиль зуба канавочной фрезы определяют графическим (рис. 64) или аналитическим путем. На проекции А показана вершина сверла с углом 2ф = 118 , прямая 00 — режущая кромка сверла. На проекции Б режущая кромка показана жирной линией, проходящей через точку fl2- Для получе-Ш1Я профиля хюперечного сеченпя сверла в плоскости, перпендикулярной к оси, режущую часть сверла в проекции А рассекают параллельными  [c.100]

На фиг. 432 приведены элементы конструкции винтовых сверл с коническим и цилиндрическим хвостовиком. На фиг. 433, а показаны геометрические параметры режущей части сверла, где 1—2 и 3—4 главные режущие кромки 1—3 лезвие перемычки 2—5 и 4—6 — вспомогательные лезвия круглошлифованных ленточек а — задний угол в точке на режущей кромке в цилиндрическом сечении сверл — передний угол в плоскости, перпендикулярной к режущей кромке ср — главный угол в плане (фиг. 433, б) — угол в плане переходной кромки /о — ширина переходной кро . ки в мм I — угол наклона режущей кромки в град. (фиг. 433, а).  [c.629]

Цилиндрическое фрезерование органического стекла концевыми фрезами необходимо проводить при скоростях резания 10—30 м мин (при работе без охлаждения), подачах 0,1—0,4 жж/зуб и глубине резания 0,5—3 мм. Геометрия фрез следующая ш = 50—60°, ат = 18—20°, a,v = 19—25 и Jn = 2—5°. Материал фрез — быстрорежущие стали Р9 или Р18 с твердостью после термообработки 58—62 HR . Фрезерование необходимо вести при подаче фрезы против ее вращения. Для черновой и, где это можно, чистовой обработок элементов нриаденялись фрезы стандартных длин. Для чистовой обработки глубоких выемок с целью получения малых радиусов стыков R = 5—7 мм) вертикальных элементов модели применялись специально изготовленные фрезы с указанной выше геометрией режущей части, получаемые или приваркой к стандартной фрезе удлинительного хвостовика, или переточкой стандартных сверл большой длины с последующей их шлифовкой на круглошлифовальном станке.  [c.65]

К конструктивным элементам относятся D — диаметр сверла 2ф — угол режущей части (угол при вершине) ю — угол наклона винтовой канавки а, у, 6 — геометрические параметры ренсущей части сверла, т. е. передний и задний углы и угол резания d — толщина сердцевины (или диаметр сердцевины) Ь — ширина пера (зуба) f — ширина ленточки обратная конусность форма режущей кромки и профиль канавки сверла — длина рабочей части L — общая длина сверла.  [c.248]

mash-xxl.info

Углы сверла в процессе резания

Поиск Лекций

Введение

Сверло́ — это режущий инструмент, с вращательным движением резания и осевым движением подачи, предназначенный для выполнения отверстий в сплошном слое материала. Свёрла могут также применяться для рассверливания, то есть увеличения уже имеющихся, предварительно просверленных отверстий, и засверливания то есть получения несквозных углублений.

Спиральные cвёрла по металлу с конусными хвостовиками Морзе №1, 2, 3 и 4.

Элементы спирального сверла

Спиральное сверло представляет собой цилиндрический стержень, рабочая часть которого снабжена двумя винтовыми спиральными канавками, предназначенными для отвода стружки и образования режущих элементов.

  • Рабочая часть
    • Режущая часть имеет две главные режущие кромки, образованные пересечением передних винтовых поверхностей канавок, по которым сходит стружка, с задними поверхностями, а также поперечную режущую кромку (перемычку), образованную пересечением задних поверхностей.
    • Направляющая часть имеет две вспомогательные режущие кромки, образованные пересечением передних поверхностей с поверхностью ленточки (узкая полоска на цилиндрической поверхности сверла, расположенная вдоль винтовой канавки и обеспечивающая направление сверла при резании, а также уменьшение трения боковой поверхности о стенки отверстия).
  • Хвостовик — для закрепления сверла на станке или в ручном инструменте.
    • Поводок для передачи крутящего момента сверлу или лапка для выбивании сверла из конусного гнезда.
  • Шейка, обеспечивающая выход круга при шлифовании рабочей части сверла.

Углы сверла

Элементы спирального сверла.

А - с коническим хвостовиком; В - с цилиндрическим хвостовиком; а -рабочая режущая часть; б - шейка; в - ширина пера; г - лапка; д - поводок; е - канавка стружечная винтовая; ж - перо; з - хвостовик; и - перемычка; L - общая длина; L0 - длина "рабочей режущей части"; D - диаметр; ω - угол наклона "канавки стружечной винтовой"; 2φ - угол при вершине; f - ширина ленточки спиральной; ψ - угол наклона перемычки

  • Угол при вершине 2φ — угол между главными режущими кромками сверла. С уменьшением 2φ увеличивается длина режущей кромки сверла, что приводит к улучшению условий теплоотвода, и таким образом к повышению стойкости сверла. Но при малом 2φ снижается прочность сверла, поэтому его значение зависит от обрабатываемого материала. Для мягких металлов 2φ=80…90°. Для сталей и чугунов 2φ=116…118°. Для очень твердых металлов 2φ=130…140°.
  • Угол наклона винтовой канавки ω — угол между осью сверла и касательной к винтовой линии ленточки. Чем больше наклон канавок, тем лучше отводится стружка, но меньше жёсткость сверла и прочность режущих кромок, так как на длине рабочей части сверла увеличивается объём канавки. Значение угла наклона зависит от обрабатываемого материала и диаметра сверла (чем меньше диаметр, тем меньше ω).
  • Передний угол γ определяется в плоскости, перпендикулярной режущей кромке, причём его значение меняется. Наибольшее значение он имеет у наружной поверхности сверла, наименьшее — у поперечной кромки.
  • Задний угол α определяется в плоскости, параллельной оси сверла. Его значения так же, как и переднего угла, изменяются. Только наибольшее значение он имеет у поперечной кромки, а наименьшее — у наружной поверхности сверла.
  • Угол наклона поперечной кромки ψ расположен между проекциями главной и поперечной режущих кромок на плоскость, перпендикулярную оси сверла. У стандартных свёрл ψ=50…55°.

Переменные значения углов γ и α создают неодинаковые условия резания в различных точках режущей кромки.

Углы сверла в процессе резания

Углы сверла в процессе резания отличаются от углов в статике, так же, как и у резцов. Плоскость резания в кинематике получается повёрнутой относительно плоскости резания в статике на угол μ и действительные углы в процессе резания будут следующими:

γкин=γ+μ

αкин=α-μ

Классификация свёрл

По конструкции рабочей части бывают:

  • Спиральные (винтовые) — это самые распространённые свёрла, с диаметром сверла от 0,1 до 80 мм и длиной рабочей части до 275 мм широко применяются для сверления различных материалов.

o Конструкции Жирова — на режущей части имеются три конуса с углами при вершине: 2φ=116…118°; 2φ0=70°; 2φ0'=55°. Тем самым длина режущей кромки увеличивается и условия отвода тепла улучшаются. В перемычке прорезается паз шириной и глубиной 0,15D. Перемычка подтачивается под углом 25° к оси сверла на участке 1/3 длины режущей кромки. В результате образуется положительный угол γ≈5°.

  • Плоские (перовые) — используются при сверлении отверстий больших диаметров и глубин. Режущая часть имеет вид пластины (лопатки), которая крепится в державке или борштанге или выполняется заодно с хвостовиком.
  • Для глубокого сверления (L≥5D) — удлинённые винтовые свёрла с двумя винтовыми каналами для внутреннего подвода охлаждающей жидкости. Винтовые каналы проходят через тело сверла или через трубки, впаянные в канавки, профрезерованные на спинке сверла.

o Конструкции Юдовина и Масарновского — отличаются большим углом наклона и формой винтовой канавки (ω=50…65°). Нет необходимости частого вывода сверла из отверстия для удаления стружки, за счет чего повышается производительность.

  • Одностороннего резания — применяются для выполнения точных отверстий за счёт наличия напраляющей (опорной) поверхности (режущие кромки расположены по одну сторону от оси сверла).

o Пушечные — представляют собой стержень, у которого передний конец срезан наполовину и образует канал для отвода стружки. Для направления сверла предварительно должно быть просверлено отверстие на глубину 0,5…0,8D.

o Ружейные — применяются для сверления отверстий большой глубины. Изготовляются из трубки, обжимая которую получают прямую канавку для отвода стружки с углом 110…120° и полость для подвода охлаждающей жидкости.

  • Кольцевые — пустотелые свёрла, превращающие в стружку только узкую кольцевую часть материала.
  • Центровочные — применяют для сверления центровых отверстий в деталях.

По конструкции хвостовой части бывают:

  • Цилиндрические
  • Конические
  • Четырёхгранные
  • Шестигранные
  • Трёхгранные
  • SDS

По способу изготовления бывают:

  • Цельные — спиральные свёрла из быстрорежущей стали марок Р9, Р18, Р9К15 диаметром до 8 мм, либо из твёрдого сплава диаметром до 6 мм.
  • Сварные — спиральные свёрла диаметром более 8 мм изготовляют сварными (хвостовую часть из углеродистой, а рабочую часть из быстрорежущей стали).
  • Оснащённые твёрдосплавными пластинками — бывают с прямыми, косыми и винтовыми канавками (в том числе с ω=60° для глубокого сверления). Более эффективны при обработке хрупких материалов.

По назначению

По форме обрабатываемых отверстий бывают:

  • Цилиндрические

'

По обрабатываемому материалу бывают:

  • Универсальные
  • Для обработки металлов и сплавов
  • Для обработки бетона, кирпича, камня — имеет наконечник из твёрдого сплава, предназначенный для бурения твёрдых материалов (кирпич, бетон) с ударно-вращательным сверлением. Свёрла, предназначенные для обычной дрели, имеют цилиндрический хвостовик. Хвостовик бура для перфораторов имеет различную конфигурацию: цилиндрический хвостовик, SDS-plus, SDS-top, SDS-max и т. д.
  • Для обработки стекла, керамики
  • Для обработки дерева

 

Некоторые виды свёрл:

A — для обработки металла;

B — для обработки дерева;

C — для обработки бетона;

D — перовое сверло для обработки дерева;

E — универсальное сверло для обработки металла или бетона;

F — для обработки листового металла;

G — универсальное сверло для обработки металла, дерева или пластика.

Хвостовые части:

1, 2 — цилиндрические;

3— SDS-plus;

4 — шестигранник;

5 — четырёхгранник;

6 — трёхгранник;

7 — для шуруповертов.

Литература

· Кожевников Д. В., Кирсанов С. В. Металлорежущие инструменты. Учебник (гриф УМО). Томск: Изд-во Томского ун-та. 2003. 392 с. (250 экз.).

· Кожевников Д. В., Кирсанов С. В. Резание материалов. Учебник (гриф УМО). М.:Машиностроение. 2007. 304 с. (2000 экз.).

· Собичевский В. Т., Фрик Э. Л. Буравы // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). — СПб., 1890—1907.

· Сандомирский И. Биография сверла // Техника — молодёжи. — М.: Молодая гвардия, 1955. — Вып. 3. — С. 24.

· Филиппов Г. В. Режущий инструмент.—Л.: Машиностроение, 1981.—392

 



poisk-ru.ru

Геометрия спирального сверла — КиберПедия

Сверление является одним из самых распространённых методов получе­ния отверстия. Режущим инструментом служит сверло, с помощью которого получают отверстие в сплошном материале или увеличивают диаметр ранее просверленного отверстия (рассверливание). Движение резания при свер­лении - вращательное, движение подачи - поступательное. Режущая часть сверла изготовляется из инструментальных сталей (Р18, P12, P6M5 и др.) и из твердых сплавов. По конструкции различают свёрла: спиральные, с прямыми канавками, перовые, для глубоких отверстий, для кольцевого сверления, центровочные и специальные комбинированные. К конструктив­ным элементам относятся: диаметр сверла D, угол режущей части (угол при вершине), угол наклона винтовой канавки w, геометрические пара­метры режущей части сверла, т.е. соответственно передний g и задний a углы и угол резания d, толщина сердцевины d (или диаметр сердцевины), толщина пера (зуба) b, ширина ленточки f, обратная конусность j1, форма режущей кромки и профиль канавки сверла, длина рабочей части lo, общая длина сверла L.

 

 

 
 

 

 

 

Рис. 5.9. Части и элементы спирального сверла

 

Диаметр сверла следует всегда брать немного меньше, чем диаметр просверливаемого отверстия, так как диаметр отверстия при сверлении увеличивается.

Как и резец, сверло имеет передний и задний углы. Передний угол - угол между касательной к передней поверхности в рассматриваемой точке режущей кромки и нормалью в той же точке к поверхности вращения режу­щей кромки вокруг оси сверла. Передний угол рассматривается в плоскос­ти, перпендикулярной к режущей кромке.

 

 
 
 

 

 

Рис. 5.10. Передний и задний углы сверла

 

Наибольшее значение угол g имеет на периферии сверла, где в плос­кости, параллельной оси сверла, он равен углу наклона винтовой канавки w. Наименьшее значение угол g имеет у вершины сверла. На поперечной кромке угол g имеет отрицательное значение, что создаёт угол резания больше 90°, а, следовательно, и тяжелые условия работы. Такое резкое из­менение переднего угла вдоль всей длины режущей кромки является боль­шим недостатком сверла, так как это вызывает более сложные условия об­разования стружки. На периферии сверла, где небольшая скорость резания и наибольшее тепловыделение, необходимо было бы иметь и наибольшее те­ло зуба сверла. Большой же передний угол уменьшает угол заострения, что приводит к более быстрому нагреву этой части сверла, а, следова­тельно, и к наибольшему износу.

Задний угол a - угол между касательной к задней поверхности в рассматриваемой точке режущей кромки и касательной в той же точке к окружности ее вращения вокруг оси сверла. Этот угол принято рассматри­вать в плоскости, касательной к цилиндрической поверхности, на которой лежит рассматриваемая точка режущей кромки.

Для точки, находящейся на периферии сверла, задний угол в нормаль­ной плоскости Б-Б может быть определён по формуле

tgaн=tga sinj (5.15)

Действительное значение заднего угла во время работы иное по срав­нению с тем углом, который мы получили при заточке и измерили в стати­ческом состоянии. Это объясняется тем, что сверло во время работы не только вращается, но и перемещается вдоль оси. Траекторией движения точки будет не окружность (как это принимают при измерении угла), а некоторая винтовая линия, шаг которой равен подаче свёрла в миллимет­рах за один его оборот. Таким образом, поверхность резания, образуе­мая всей режущей кромкой, представляет собой винтовую поверхность, касательная к которой и будет действительной плоскостью резания.

 
 

 

 

Рис. 5.11. Поверхности заготовки при сверлении

 

Действительный задний угол в процессе резания a’ заключен между этой плоскостью и плоскостью, касательной к задней поверхности сверла.

 

 

 
 

 

Рис. 5.12. Углы режущих кромок сверла в процессе резания

 

 

Он меньше угла, измеренного в статическом состоянии, на некоторую величину m:

a’= a - m (5.16)

tgm =s/pD (5.17)

Чем меньше диаметр окружности, на которой находится рассматривае­мая точка режущей кромки, и чем больше подача s тем больше угол m и меньше действительный задний угол a’.

Действительный же передний угол в процессе резания g’ соответс­твенно будет больше угла g измеренного после заточки в статическом состоянии:

g’=g +m (5.18)

 

Чтобы обеспечить достаточную величину заднего угла в процессе ре­зания в точках режущей кромки, близко расположенных к оси сверла, а также для получения более или менее одинакового угла заострения зуба вдоль всей длины режущей кромки, задний угол заточки делается: на пе­риферии 8 -14°, у сердцевины 20 - 27°, задний угол на ленточках сверла 0°.

Кроме переднего и заднего углов, сверло характеризуется углом наклона винтовой канавки w, углом наклона поперечной кромки y, углом при вершине 2j, углом обратной конусности j1. Угол w = 18-30°, y=55°, j1 = 2-3°, у свёрл из инструментальных сталей 2j = 60-140°.

Спиральное сверло имеет ряд особенностей, отрицательно влияющих на протекание процесса стружкообразования при сверлении:

а) уменьшение переднего утла, в различных точках режущих кромок по мере приближения рассматриваемой точки к оси сверла,

б) неблагоприятные условия резания у поперечной кромки (так какугол резания здесь больше 90°),

в) отсутствие заднего угла у ленточек сверла, что создает большоетрение об обработанную поверхность.

Для облегчения процесса стружкообразования и повышения режущих свойств сверла производят двойную заточку сверла и подточку перемычки и ленточки.

При двойной заточке сверла вторая заточка производится под углом 2jо=70° на ширине В=2,5-15 мм.

 

 

       
   
 
 

 

 

Рис. 5.13. Элементы заточки и подточки спиральных свёрл

 

Такая заточка повышает стойкость сверла, а при одной и той же стойкости позволяет увеличить и скорость резания.

Подточка перемычки (сердцевины) производится на длине l=3-15мм.

От такой подточки уменьшается длина поперечной кромки (размер А=1,5-7,5 мм) и величина угла резания в точках режущих кромок, распо­ложенных вблизи перемычки сверла. Для уменьшения трения ленточек об обратную поверхность (о стенки отверстия) производится подточка ленто­чек под углом a1=6-8° на длине l1= 1,5-4 мм, что приводит к повышению стойкости сверла.

Глава 6

cyberpedia.su